Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Manganese antimony diselenide iodide, $\mathrm{MnSbSe}_{2} \mathrm{I}$

Olivier Tougait, ${ }^{\text {a* }}$ James A. Ibers ${ }^{\text {a }}$ and Arthur Mar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
Correspondence e-mail: olivier.tougait@univ-rennes1.fr

Received 17 June 2003
Accepted 24 June 2003
Online 22 July 2003
$\mathrm{MnSbSe}_{2} \mathrm{I}$ contains layers parallel to the $b c$ plane that consist of edge- and corner-sharing $\mathrm{MnSe}_{6 / 2}$ and $\mathrm{MnSe}_{2 / 2} \mathrm{I}_{4 / 2}$ octahedra. Sb atoms are located between these layers and form SbSe_{3} trigonal pyramids. Owing to the off-center placement of the Sb atom and the inequivalence of the two crystallographically independent Mn atoms, the monoclinic $\mathrm{MnSbSe}_{2} \mathrm{I}$ structure is a distorted variant of the orthorhombic UFeS_{3} structure type.

Comment

Quaternary phases consisting of a transition metal and several types of p-block elements in an ordered arrangement are relatively scarce. In TMPnQX systems (where TM is a transition metal; $\mathrm{P} n=\mathrm{P}, \mathrm{As}, \mathrm{Sb}$ or $\mathrm{Bi} ; Q=\mathrm{S}, \mathrm{Se}$ or Te ; and $X=\mathrm{F}$, Cl, Br or I), the most prevalent examples contain Cu , for example, $\mathrm{Cu}_{6} \mathrm{PS}_{5} \mathrm{Br}$ (Haznar et al., 1999), $(\mathrm{CuBr})_{3} \mathrm{P}_{4} \mathrm{Se}_{4}$ (Reiser et al., 2003), (CuI) $\mathrm{P}_{4} \mathrm{Se}_{4}$ (Pfitzner et al., 1999), $(\mathrm{CuI})_{3} \mathrm{P}_{4} \mathrm{Se}_{4}$ (Pfitzner \& Reiser, 1999), $(\mathrm{CuI})_{2} \mathrm{P}_{8} \mathrm{Se}_{3}$ (Pfitzner et al., 2000), (CuI) ${ }_{2} \mathrm{Cu}_{3} \mathrm{SbS}_{3}$ (Pfitzner, 1997), $\mathrm{Cu}_{3} \mathrm{Bi}_{2} \mathrm{~S}_{4} \mathrm{Cl}$ (Lewis \& Kupčik, 1974) and $\mathrm{Cu}_{3} \mathrm{Bi}_{2} \mathrm{~S}_{4} \mathrm{Br}$ (Mariolacos \& Kupčik, 1975), or another late d-block element, for example, $\mathrm{CdSb}_{6} \mathrm{~S}_{8} \mathrm{I}_{4}$ (Sirota et al., 1976) and $\mathrm{Hg}_{3} \mathrm{As}_{2} Q_{4} X(Q=\mathrm{S}$ or Se , and $X=\mathrm{Cl}, \mathrm{Br}$ or I; Beck et al., 2000). In most cases, the metal adopts a tetrahedral coordination, as expected for these late d block elements; an interesting exception is $\mathrm{CdSb}_{6} \mathrm{~S}_{8} \mathrm{I}_{4}$, in which the Cd atom adopts an octahedral coordination. There appear to be no examples of compounds of formula $\mathrm{TMPn} Q_{2} X$.
$\mathrm{MnSbSe}_{2} \mathrm{I}$ represents a new layered structure type, as shown in Fig. 1(a). The layers are parallel to the $b c$ plane and contain two kinds of Mn -centered octahedra: atom Mn 1 is surrounded by four Se 2 and two Se 1 atoms, whereas atom Mn 2 is surrounded by four I1 and two Se 1 atoms. The octahedra share their corners along the c direction and share their edges along the b direction. The Mn-Se distances of 2.6590 (9), 2.7849 (6) and 2.7687 (9) \AA, and the $\mathrm{Mn}-\mathrm{I}$ distances of 2.8380 (5) \AA

Figure 1
(a) $\mathrm{MnSbSe}_{2} \mathrm{I}$ viewed along the b axis and (b) UFeS_{3} viewed along the a axis. Displacement ellipsoids are drawn at the 99% probability level in both cases.
(Table 1) are comparable to those found in olivine-type $\mathrm{Mn}_{2} \mathrm{SiSe}_{4}$ [2.671 (4)-2.756 (3) Å; Jobic et al., 1995] and in CsMnI_{3} [2.920 (2) \AA; Zandbergen, 1980], respectively, where octahedrally coordinated Mn is present. Between the layers lie the Sb 1 atoms, which are coordinated to three Se atoms, forming a trigonal pyramid, with $\mathrm{Sb}-\mathrm{Se}$ distances [2.5995 (9) and 2.7277 (6) \AA] that are similar to those in $\mathrm{Sb}_{2} \mathrm{Se}_{3}[2.589$ (1)2.803 (1) A; Voutsas et al., 1985]. The closest distance between an Sb 1 atom in one layer and an Se atom in the adjacent layer is 3.1523 (8) \AA, which is too long to be considered as a covalent bond.

The structure of monoclinic $\mathrm{MnSbSe}_{2} \mathrm{I}$ (space group C2/m) is a distorted variant of orthorhombic UFeS_{3} (Cmcm; Fig. 1b; Noël \& Padiou, 1976). In the latter structure, layers of Fecentered octahedra are also evident, but the intervening U atoms are arranged more symmetrically, residing in tricapped trigonal-prismatic sites. The lower monoclinic symmetry ($\beta=91.27^{\circ}$) of $\mathrm{MnSbSe}_{2} \mathrm{I}$ arises from the absence of mirror and glide planes associated with the displacement of the Sb atoms, as well as the chemical inequivalence of the two types of Mn -centered octahedra. The irregular position of the Sb atom is indicative of Sb^{3+}, implying the presence of a lone pair. This assignment is consistent with the charge-balanced formulation $\left(\mathrm{Mn}^{2+}\right)\left(\mathrm{Sb}^{3+}\right)\left(\mathrm{Se}^{2-}\right)_{2}\left(\mathrm{I}^{-}\right)$. Comparison with the analogous formulation $\left(\mathrm{U}^{3+}\right)\left(\mathrm{Fe}^{3+}\right)\left(\mathrm{S}^{2-}\right)_{3}$ shows that replacement of one of the chalcogen atoms in UFeS_{3} by a halogen atom in $\mathrm{MnSbSe}_{2} \mathrm{I}$ is compensated by substitution with a transition-metal ion of lower charge.

Experimental

Single crystals of $\mathrm{MnSbSe}_{2} \mathrm{I}$ were obtained as a by-product of the reaction of Sm (1.20 mmol , Alfa, $40 \mathrm{mesh}, 99.9 \%$), Mn (0.20 mmol , Alfa, 100 mesh, 99.9%), Sb (0.20 mmol , Alfa, 325 mesh, 99.5%) and Se (2.40 mmol , Alfa, $325 \mathrm{mesh}, 99.99 \%$) in a fused-silica tube containing a small amount of I_{2}. The reaction tube was heated at 1223 K for 4 d before being cooled to 973 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$, at which point the furnace was turned off. The product consisted mainly of golden plate-like crystals of SmSe_{3} and a few black prisms of $\mathrm{MnSbSe}_{2} \mathrm{I}$. Qualitative energy-dispersive X-ray analysis performed

inorganic compounds

on several of these prisms revealed an average composition (atomic \%) of 19 (2)\% Mn, 22 (2) \% Sb, 39 (2) \% Se and 21 (2)\% I, in good agreement with that deduced from the single-crystal X-ray analysis. No trace of Sm was detected.

Crystal data
$\mathrm{MnSbSe}_{2} \mathrm{I}$
$M_{r}=461.51$
Monoclinic, $C 2 / m$
$a=13.319(3) \AA$
$b=4.0359(8) \AA$
$c=10.105(2) \AA$
$\beta=91.27(3)^{\circ}$
$V=543.08(19) \AA^{3}$
$Z=4$
$D_{x}=5.645 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=461.51$
Monoclinic, $C 2 / m$
$a=13.319$ (3) A
$b=10305$ (2) \AA
$\beta=91.27$ (3) ${ }^{\circ}$
$=543.08$ (19) A^{3}

Data collection

Bruker SMART 1000 CCD area-	737 independent reflections
detector diffractometer	709 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.026$
Absorption correction: numerical	$\theta_{\max }=28.6^{\circ}$
$(X P$ in SHELXTL; Sheldrick,	$h=-17 \rightarrow 17$
$1997)$	$k=-5 \rightarrow 5$
$T_{\min }=0.145, T_{\max }=0.656$	$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R(F)=0.026$
$w R\left(F^{2}\right)=0.071$
$S=1.37$
737 reflections
34 parameters

Mo $K \alpha$ radiation
Cell parameters from 2097 reflections
$\theta=3.1-28.6^{\circ}$
$\mu=26.21 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Prism, black
$0.19 \times 0.04 \times 0.02 \mathrm{~mm}$

737 independent reflections
709 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=28.6^{\circ}$
$h=-17 \rightarrow 17$
$l=-13 \rightarrow 13$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.04 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=2.11 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\text {min }}=-1.63$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.0022 (3)

Table 1
Selected interatomic distances ((\AA).

Sb1-Se2	2.5995 (9)	$\mathrm{Mn} 1-\mathrm{Se} 2^{\text {iii }}$	2.7849 (6)
$\mathrm{Sb} 1-\mathrm{Se} 1^{\text {i }}$	2.7277 (6)	$\mathrm{Mn} 2-\mathrm{Se} 1^{\text {iv }}$	2.7687 (9)
Mn1-Se1 ${ }^{\text {ii }}$	2.6590 (9)	$\mathrm{Mn} 2-\mathrm{I} 1^{\text {iii }}$	2.8380 (5)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXTL.

This research was supported by the US National Science Foundation (grant No. DMR00-96676).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1033). Services for accessing these data are described at the back of the journal.

References

Beck, J., Hedderich, S. \& Köllisch, K. (2000). Inorg. Chem. 39, 5847-5850.
Bruker (1999). SMART (Version 5.054) and SAINT (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS. Version 5.1. Shape Software, Kingsport, Tennessee, USA.
Haznar, A., Pietraszko, A. \& Studenyak, I. P. (1999). Solid State Ionics, 119, 31-36.
Jobic, S., Bodénan, F., Le Boterf, P. \& Ouvrard, G. (1995). J. Alloys Compd, 230, 16-22.
Lewis, J. Jr \& Kupčik, V. (1974). Acta Cryst. B30, 848-852.
Mariolacos, K. \& Kupčik, V. (1975). Acta Cryst. B31, 1762-1763.
Noël, H. \& Padiou, J. (1976). Acta Cryst. B32, 1593-1595.
Pfitzner, A. (1997). Chem. Eur. J. 3, 2032-2038.
Pfitzner, A. \& Reiser, S. (1999). Inorg. Chem. 38, 2451-2454.
Pfitzner, A., Reiser, S. \& Deiseroth, H.-J. (1999). Z. Anorg. Allg. Chem. 625, 2196-2201.
Pfitzner, A., Reiser, S. \& Nilges, T. (2000). Angew. Chem. Int. Ed. 39, 41604162.

Reiser, S., Nilges, T. \& Pfitzner, A. (2003). Z. Anorg. Allg. Chem. 629, 563-568.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sirota, M. I., Simonov, M. A., Egorov-Tismenko, Y. K., Simonov, V. I. \& Belov, N. V. (1976). Kristallografiya, 21, 64-68.

Voutsas, G. P., Papazoglou, A. G., Rentzeperis, P. J. \& Siapkas, D. (1985). Z. Kristallogr. 171, 261-268.
Zandbergen, H. W. (1980). J. Solid State Chem. 35, 367-375.

